
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Neural Network Model for Load Forecasting

Amit Shrivastava
1
, Dr Anand Khare

2

1
Research Scholar, CSE, Bhagwant University, Ajmer, Rajasthan, India

2
Research Director, the MRPC Company, Hyderabad, Andhra Pradesh, India

ABSTRACT
Neural Network technique works on the working of

Human Brain which contains billions of neurons in

several layers. Each neuron is connected with all the

neurons of previous layer neurons and also with all the

neurons of output layer neurons i.e. it is a complete

bipartite interconnection. Similar is the case with every

neuron. All the input which a neuron receives is summed

and if it reaches certain threshold value then neuron gives

output which is called the activation of that neuron. In

this paper we have used 3-layer neural network for load

forecasting. Also the results as obtained are also shown.

The data used here for training and testing purpose is the

actual Evening Hours Peak Load in “Mega Watt” taken

from Madhya Pradesh Power Transmission Company

Ltd. – State Load Despatch Centre , Jabalpur from

Monthly System Performance Report – September 2012.

KEYWORDS: Neural Network, Activation, Linearly

Separable Functions, Sigmoid Function, Hyperplane,

Threshold Functions, Extend Gradient, HMI(Human

Machine Interface), RMS-Root Mean Square Error

INTRODUCTION
The proposed model is using the logic like this- It has 7

neurons acting as input which will be holding the peak

loads of mon - sun of 1st week of sep-2012, next 7

neurons are there in hidden layers, after this 7 neurons are

there in output layer which will be giving the predicted

loads of next week mon to Sunday. At output layer the

comparisons is done with the actual peak loads of next

week (i.e. 2nd week of Sep 2012) and adjust the weights

accordingly to minimize the error. Once the difference of

predicted and actual loads become less then 0.00 the

weights are fixed. This completes the training. Then it is

given the 2nd week peak loads as input and prediction is

done for the 3rd week. Results were compared and %

accuracy was calculated. The contemporary work done in

this field is illustrated below.

[1] K. Y. Lee et.al. Has proposed Artificial Neural

Network (ANN) non linear model based on two distinct

load patterns namely weekday and weekend day load

patterns. Past Loads are given as input and current day

load is forecasted using 2 and 3 hidden layer network

Model. Results are shown and % error was less then 3 %.

[2] Amera Ismail et.al. Had done the short term load

forecasting of the next day based on the two years actual

load data obtained from Duhok ELc. Control in Iraq.

Error was less then 3.7 %.

[3] Mr. Rajesh Deshmukh et.al had used the 3 layer

neural network model for 24 hour advanced load

forecasting. They have used historical load data and real

time load data of May 2011 from state load dispatch

centre Jabalpur. Maximum % error was 9%.

[4] Author has discussed one hour ahead short load

forecasting for reducing the complexity of neural

network. In the proposed prediction method, the

forecasted load power is obtained by adding a correction

to the selected similar day data. Results show that the

forecasted errors have gone to maximum of 14% and

1.63% on average.

[5] In this paper Author has proposed two different hybrid

approaches based on Artificial Neural Network (ANN)

models with Autoregressive (AR) method and Weighted

Frequency Bin Blocks (WFBB) for doing next day load

forecasting. He has used ANN structure having two layers

composed of 49 and 24 neurons for input and output

layers, respectively. The forecasting results were obtained

from AR, ANN and the two hybrid models which are

compared to each other in the sense of root mean square

error (RMSE). It is observed that the RMSE values for

the hybrid approaches are smaller than the conventional

models.

[6] Author has used the levenberg-marquardt

optimization technique which has one of the best learning

rates as a back propagation algorithm for the multilayer

feed forward ANN model using Matlab r2008b ANN

toolbox. The forecasted next day 24 hourly peak loads are

obtained based on the stationary output of the ANN with

a performance mean squared error (MSE) of 5.84 e
-6

and

compares favorably with the actual power utility data.

The results have shown that the proposed technique is

robust in forecasting future load demands for the daily

operational planning of power system distribution sub-

stations in Nigeria.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

[7] In this website a complete MATLAB program is given

 for load forecasting on the basis of past loads,
 Temperature of the day and holiday knowledge.

[8] This website was used for reference purpose.

THE COMPLETE THEORY OF NEURAL

NETWORK

Figure 1- Relationship between I and J neuron.

Weight adjustment rule for 2 layers Neural Network is: -

Wji = Wji + α * Ij * Err (shown only for one weight. It

had to be repeated for all the weights.). See Fig. 1

Where α – is the fraction or learning rate. So effectively

we are adding the fraction of the total error to the weight

to adjust it.

Wji  weight of the link between j
th

 neuron and i
th

 neuron

Ij  Input to ith neuron = input * Wji = activation of jth

neuron * Wji

 Err T – O = correct output – predicted output

 2 layer Neural network is good in learning

Linearly separable function

E.g. 1 We want to learn AND function

Truth table of “AND” Function

Table 1

I1 I2 Output

0 0 0

0 1 0

1 0 0

1 1 1

 Figure 2 - AND Gate and its output

In figure 2 it can be seen that “yes” and “no” output’s of

AND Gate can be separated by a single Hyper plane.

Such functions are known as “Linearly Separable

Functions”. Similarly OR Gate also comes into the

category of Linearly Separable Functions. These kinds of

functions can be easily learnt by 2-layer Neural Network.

E.g. 2 - We want to learn Ex-OR Function

Truth Table of “Ex-OR” Function

Table 2

I1 I2 Output

0 0 0

0 1 1

1 0 1

1 1 0

Figure 3 – EX-OR Gate and its Output

As can be seen in Figure 3 no single Hyper plane is

possible which can separate out “yes” cases with “No”

cases. This comes under the category of Non-Linear

Function. These functions can be learnt effectively by 3

 Layer neural network.

 Figure 4 – Sigmoid and Threshold Functions

In Sigmoid function Input changes gradually and so is the

activation level. In most of the cases Sigmoid functions

are used for 3 layer neural network. However in certain

cases Threshold functions are also required where output

remains Zero up to a certain threshold value and then it

switches to 1 after input gains certain threshold value. In

threshold case g’ (in) (derivative of g) is dropped down as

design choice. See figure 4.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

Sigmoid function =

 =

 =

 =

= g – g
2
 = g (1-g)

g =

 where W, X are vectors i.e.

W.X = ∑

Basic Reason for going to 3 layer Network is shown in

Figure 5.

Figure 5 – Interdependency among Output Layer

Neurons

If we tune up Wk then we can tune up all output neurons.

See figure 6.

Figure 6 – Tuning up the output layer Neurons

PROPOSED MODEL FOR LOAD

FORECASTING
In this technique we have used 7 neurons for the input, 7

in the hidden layer and 7 in the output layer. The input

layer gets the input of peak loads of Monday to Sunday of

the current week. Then the weights are assigned to the

links randomly in such a manner that summation of

weights of all the links which are falling on the hidden

layer and which are falling in the output layer

is equal to 1. Then activation is calculated for all hidden

layer neurons and based on this, further we calculate the

activations of output layer neurons.

In output layer also we have used 7 neurons which will

predict peak load for the next week. First neuron pre-

dicted load will be treated as predicted peak load for

Monday of next week, second for Tuesday and so on.

Next we compare the predicted load with the true output

and do the weight adjustments until we get the predicted

value close to true output.

We can use these predicted values for taking the decision

that if any one load increases then one of the load that is

connected out of many is disconnected.

 The sample software is developed which tries to

estimate the peak load of the future on the basis of

previously stored peak loads. Neural Network self

learning technique is used for Load forecasting.

The two layered feed-forward artificial neural network

which has the feature of memory and learning is

constructed and Back Propagation learning algorithm is

used to obtain load forecasting value. The load parameter

setting is chosen to set load forecasting error limit and the

like.

Back propagation is a systematic method for training

multi layer artificial neural network. It has a strong

mathematical foundation. It is a multi layer forward

network using extend gradient based delta learning rule,

commonly known as back propagation rule. See Fig 7.

The Neural network model for load forecasting is

developed in C++ language and HMI (Human Machine

Interface) for controlling the instrument is developed in

LabView. It’s a completely connected bipartite graph. It

is first trained and then tested for predicting peak loads.

For this we need to have actual peak loads of each day for

at least 3 weeks. Following steps are followed for training

and testing the network:-
1. First part consists of training the neural network and

in second part we do the testing of our neural network.

2. We train the neural network with first week data as

true input and second week data as true

output.

3. The output given by output layer neurons is compared

with true output and does the weight adjustment until

the predicted value become close enough to the true

output.

4. We fix the weights and then give second week true

peak loads as input and predict the third week load.

5. The predicted loads given by trained neural network

are compared with the actual third week peak loads.

6. We calculate the efficiency/effectiveness of our

trained network by comparing the output of the
neurons with actual peak loads of 3rd week.

7. Above steps can be repeated for further weeks.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

8. As we adjust the weights with more and more

weeks i.e. as we train our neural network with

more and more of data the weights begin to fine

tune more and more resulting into greater

accuracy.

9. Also we can consider temperature data of that

particular day for further increasing our

accuracy.

ai = g(∑ aj = g(∑

Activation function can be sigmoid or simple linear

function.

Weights are adjusted as per following formula for linear

function activation (i.e. without using sigmoid or any

other activation function):-

Wji = Wji + α * aj * Erri [These weight adjustments have to

be done with every Wji connected with j
th

 neuron]

Wkj = Wkj + α * ∑ [(yi-ai)*Wji] * xk [This had to be

repeated with all inputs feeding into j
th

 neuron.]

See fig 8. Above weights adjustments were found out by

Partial derivation of error difference w.r.t. weight. It will

be different for sigmoid function.

α  Learning Rate

Wji  weight between hidden layer jth neuron and output

neuron i.

WkjIt is Weight between input neuron k and hidden

layer neuron j.
ai It is activation for output neuron i.

aj It is activation for hidden layer neuron j.

Erri  True output – Output generated by the output

layer neuron

Yi  True output

xk  input value for the input layer neuron k.

Where ∑ [(yi-ai)*Wji] is error summation over all i

(output neurons) for error generated due to j
th

 neuron.

All Wkj are to be adjusted which are feeding into j.

 Figure 7: Neural Network model for Load forecasting

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

 Figure 8:- Weight adjustment of a single path

DERIVATION-
Root Mean Square error is the most common error which

is used.

RMS =

 Err

2
 =

 (Y - ai)

2

Where Y- is the true output, ai – activation of i
th

 neuron

Now for wt adjustment for Wj i.e. wts between hidden

layer and output layer, we see the change in error with

respect to change in wt i.e. Output error is partially

derivates w.r.t wt Wj. Then fraction of that term is

added to the weight Wj to reduce the error.

 =

 = E *

 = E *

 = E *

 ∑

Since Y is a constant so when derivates, it gets

eliminated.

= E * (
 ∑

) = - E * g’(in) * Xj

Here, E = Y - ai , i.e. true output – predicted

output(activation of output neuron)
Xj – is Input if it is 1

st
 layer ie Input layer neuron and it is

aj i.e. activation of jth neuron if this neuron belongs to

higher layer neuron

So, wt updating rule Wji now becomes

Wji  Wji - α * (- E * g’(in) * Xj)

Wji  Wji + α * (E * g’(in) * Xj)

Wji  Wji + α * (Yi - ai) * Xj * g’(in)

If we are not using any function and simply relying on wt

adjustment for getting the correct output then as a design

choice we can safely drop derivative of g i.e. g’(in)

So, final Wt adjustment rule for Wji i.e. wt between

hidden layer and output layer becomes

Wji  Wji + α * (Yi - ai) * Xj

 Wji  Wji + α * (Yi - ai) * aj -- Eqn 1

This wt adjustment is only for one link wt i.e. between jth

neuron and ith neuron. In a similar fashion all the wts

between hidden layer and output layer are to be adjusted.

Now wt adjustment for Wkj i.e. link wt between hidden

layer and input layer.

 This Wkj is not only affecting aj (activation of jth neuron

of hidden layer) but all activations of output layer also.

Here also for wt adjustment for Wk,j i.e. wts between

hidden layer and Input layer, we see the change in error

with respect to change in wt i.e. Output error is partially

derivates w.r.t wt Wk,j. Then fraction of that term is

added to the weight Wk,j to reduce the error.

 =

 =

 =

 * 2 * ∑ *

(

 -

)

Here

 gets eliminated as Yi is constant w.r.t Wk,j.

= - ∑ *

 = - ∑ *

 =

-∑ g’(inj)

= -∑ g’ (inj)
 ∑

Now Wj,i is constant or not dependent on Wk,j as these

two wts are independent from each other. So, Wj,i comes

out of derivation as a constant. However aj (activation of

j
th

 neuron) is dependent on Wk,j .

So, => - ∑ Wj, i) * g’ (inj) *

 =

 - ∑ Wj, i) g’ (inj)
 ∑

= - ∑ Wj, i) g’ (inj) ak

Again as a design choice “g’ (inj)” can be dropped. ak for

input layer is Xk i.e. the input feeding into input layer.
= - ∑ * Wj, i] * xk

So, Weight updating rule for Wk,j = Wk,j - α * (-
∑ * Wj, i] * xk)

 Wk,j=Wk,j+α*∑ *Wj,i]*xk -- Eqn 2

∑ * Wj, i]  summation had to be applied

to all i (output neurons)

This wt updating rule had to be repeated with all

inputs feeding into j
th

 neuron i.e. all Wk,j are to be

adjusted which are feeding into j.

 WjiWji+α* (Yi - ai) * aj -- Eqn 1

 Wk,j=Wk,j+α*∑ * Wj, i] * xk -- Eqn 2

Procedure will be as follows:-
1. Apply Eqn-1 to adjust all output wts of 1

st
 hidden layer neuron.

2. Apply Eqn-2 to adjust all input wts of 1
st
 hidden layer neuron.

3. Repeat step 1 and 2 to adjust all input and output wts of all 7

neurons of hidden layer.
4. Assign all output wts of hidden layer to corresponding input wts

of output layer.

5. Assign all input wts of hidden layer to corresponding output wts
of input layer.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

6. Calculate activations of all neurons of all layers.

7. Activation value of output layer neuron is our

predicted value. Compare the predicted value/Load

with actual Load. Store the differences.

8. Check the summation of all 7 differences (from 7

output layer neurons). Repeat the above procedure

until the summation of differences becomes 0.00.

 The value of Learning rate α is very important so as to

achieve the summation of differences = 0.00. We

have used learning rate α= 0.00000001 for Eqn-1 & α

= 0.000000001 for Eqn-2. This has been obtained by

hit & trial method.

 No of passes required to reach the goal varies from 15

to 32 which is near the optimum no of passes for this

particular scenario. See Figure 9.

PSEUDO CODE FOR NEURAL NETWORK

MODEL FOR TRAINING(WHICH WAS

ACTUALLY DEVELOPED IN C++)

1. Define array of structures for input layer, hidden layer

and output layer

2. The input layer neuron structure will contain 2 fields

namely (1) input load (2) array of 7 output weights

3. The hidden layer neuron structure will contain 3 fields

(1) array of 7 output weights (2) array of 7 input

weights (3) activation of a neuron

4. The output layer neuron structure will contain 2 fields

(1) activation (2) array of 7 input weights

5. Assign 7 random inputs weights to hidden layer

neuron and total weights coming to one hidden

 layer neuron should be 1. Total 49 input weights will

be assigned for 7 neurons of hidden layer.

6. Assign 7 random inputs weights to output layer

neuron and total weights coming to one output layer

neuron should be 1. Total 49 input weights will be

assigned for 7 neurons of output layer.

7. Assign hidden layer input wts to output weights of

input layer.

8. Assign output layer input neuron wts to hidden layer

output wts.

9. calculate activations of hidden and output layer

neurons

10. Calculate the diff between true output and predicted

value.

11. Calculate the error to be back propagated to hidden

layer.

12. As per the error readjust the weights.

13. Calculate the updated activations.

14. Repeat steps 7 through 13 until the difference of the

predicted load and actual load becomes less then 0.00.

6 Text Files are generated from this program.

1. Diff1.txt – containing difference of the True output

and Predicted Output for all passes.

2. Acti.txt – Containing the activation values of 7 output

layer neurons for all passes.

3. Iwts.txt – Containing 49 output weights of 7 neurons

 of Input layer for all passes.

4. Hwts.txt – Containing 49 input and 49 output weights

 of 7 Hidden layer neurons for all passes.

 Figure 9 – Working of the Weight updating rule algorithm

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

5. Owts.txt – Containing 49 input weights of 7 output

 Layer neurons for all passes.

6. Fwts.txt – containing the final trained weights of Input,

 Hidden and Output layer neurons.

DIFF1.TXT
Below data was generated in one typical run. We can

see that the “sum of difference” is behaving as shown

in Figure 9 until it reaches 0.005175.

difference

981.311573 ,549.520073 ,1388.227402 ,1668.05084

,1146.024601 ,1382.751927 ,1590.259518 ,

sum of difference = 8706.145935

 Individual difference 1 between true and predicted value

-2084.053529 ,-1767.631439 ,-2260.168215 ,-

2405.55368 ,-2029.449868 ,-2147.376608 ,-2231.996729

 sum of difference 1 = -14926.230067

 Individual difference 2 between true and predicted value

3923.541324 ,3614.507113 ,3930.282111 ,3989.143243

,3630.133174 ,3668.477084 ,3660.478437 ,

 sum of difference 2 = 26416.562486

Individual difference 3 between true and predicted value

-5639.05569 ,-5391.029158 ,-5415.864814 ,-

5355.140693 ,-5079.857214 ,-5009.29444 ,-4875.428431

 sum of difference 3 = -36765.67044

………………

……………….

 Individual difference 12 between true and predicted

value

0.068962 ,0.028012 ,0.119648 ,0.145648 ,0.094342

,0.117803 ,0.146 ,

 sum of difference 12 = 0.720415

 Individual difference 13 between true and predicted

value

-0.042856 ,-0.050623 ,-0.027894 ,-0.020576 ,-0.030623

,-0.023893 ,-0.015532 ,

 sum of difference 13 = -0.211999

Individual difference 14 between true and predicted value

0.005376 ,0.001491 ,0.010293 ,0.012809 ,0.007937

,0.010211 ,0.012945 ,

 sum of difference 14 = 0.061062

Individual difference 15 between true and predicted value

-0.003783 ,-0.00457 ,-0.002321 ,-0.001604 ,-0.002618 ,-

0.001959 ,-0.001143 ,

 sum of difference 15 = -0.017997

Individual difference 16 between true and predicted value

0.00041 ,0.00004038 ,0.000887 ,0.001131 ,0.000667

,0.000887 ,0.001153

sum of difference 16 = 0.005175

ACTI.TXT
It can be seen that after 16

th
 pass the Activation

(Predicted Output) has become almost same as true

output.

0 TIME--ACTIVATIONS OF OUTPUT LAYER

1-4361.688427 , 2-4276.479927 , 3-4169.772598 , 4-

4026.94916 , 5-3925.975399 , 6-3803.248073 , 7-

3712.740482 ,

1 TIME--ACTIVATIONS OF OUTPUT LAYER

1-7427.053529 , 2-6593.631439 , 3-7818.168215 , 4-

8100.55368 , 5-7101.449868 , 6-7333.376608 , 7-

7534.996729 ,

…………

………….

16 TIME--ACTIVATIONS OF OUTPUT LAYER

1-5342.99959 , 2-4825.99996 , 3-5557.999113 , 4-

5694.998869 , 5-5071.999333 , 6-5185.999113 , 7-

5302.998847 ,

true output

5343 , 4826 , 5558 , 5695 , 5072 , 5186 , 5303 ,

true input

5236 , 5214 , 5060 , 5122 , 5266 , 5643 , 5064 ,

HWTS.TXT
Each Neuron is associated with 7 weights. These are the

finally trained weights which were used to predict 3
rd

week load when 2
nd

 week load is given as Input.

SIXTEENTH TIMEINPUT WTS OF HIDDEN

LAYER/ OUTPUT WTS OF INPUT LAYER

 neuron 1-->

1 -0.06552 , 2-0.064374 , 3-0.062901 , 4-

0.063153 , 5-0.065965 , 6-0.069896 , 70.92586 ,

 neuron 2-->

1-0.063037 , 2-0.063613 , 3-0.058686 , 4-

0.062035 , 5-0.065151 , 6-0.069954 , 70.911899

 neuron 3-->

1-0.063747 , 2-0.056599 , 3-0.061731 , 4-

0.062069 , 5-0.057314 , 6-0.069124 , 70.890868

neuron 4-->

1-0.041113 , 2-0.061506 , 3-0.05441 , 4-

0.030233 , 5-0.059147 , 6-0.066051 , 70.826926 ,

 neuron 5-->

1-0.057111 , 2-0.054565 , 3-0.055689 , 4-

0.055707 , 5-0.057972 , 6-0.061813 , 70.819416

neuron 6-->

1-0.05735 , 2-0.056892 , 3-0.054407 , 4-

0.054357 , 5-0.050112 , 6-0.061812 , 70.802961

neuron 7-->

10.034536 , 20.034634 , 30.034231 , 40.039024

, 50.034749 , 60.038036 , 70.877309 ,

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 8

SIXTEENTH TIMEOUTPUT WTS OF HIDDEN

LAYER/ INPUT WTS OF OUTPUT LAYER

 neuron 1-->

10.13025 , 20.105535 , 30.15081 , 40.164491 ,

50.132602 , 60.146357 , 70.160419 ,

 neuron 2-->

10.132035 , 20.103239 , 30.15442 , 40.162255 ,

50.136324 , 60.142161 , 70.152933 ,

 neuron 3-->

10.128125 , 20.101927 , 30.151184 , 40.159444

, 50.129652 , 60.141457 , 70.15171 ,

 neuron 4-->

10.120545 , 20.102095 , 30.155515 , 40.168693

, 50.128412 , 60.134267 , 70.163406 ,

 neuron 5-->

10.122176 , 20.092643 , 30.131908 , 40.144892

, 50.125589 , 60.13902 , 70.136428 ,

 neuron 6-->

10.113881 , 20.100239 , 30.131792 , 40.14428 ,

50.11658 , 60.126662 , 70.136224 ,

 neuron 7-->

10.623256 , 20.594095 , 30.603684 , 40.597744

, 50.564702 , 60.558044 , 70.546545.

Another program is developed in C++ which read these

finally trained weights from the file “fwts.txt”. The 2
nd

week load which was treated as true output for 1
st

program for training purpose was treated as true input

for 2
nd

 program. Then the predicted load is found out with

the help of these trained weights and true input of second

Week. Finally predicted load is compared with true load

of 3
rd

 week and % accuracy was calculated.

Pseudo code for neural network model for

testing(which was actually developed in C++)

1. Adjust the weights of all neurons of all layers as

per the finally trained weights.

2. Give the 2nd week true peak loads as input and

predict for 3rd week (by calculating the

activations of output layer neurons).

3. Find the accuracy of prediction.

True data used in this program is as follows:

1
st
 week - 5236 , 5214 , 5060 , 5122 , 5266 , 5643 , 5064 ,

2
nd

 week - 5343 , 4826 , 5558 , 5695 , 5072 , 5186 , 5303

3
rd

 week – 5043, 5622, 5816, 5934, 5865, 6043, 6121,

Above values are in MW.

CONCLUSIONS

It was concluded that Network model was able to predict

the next week Load with 96.5% accuracy i.e. error was

less then 3.5%. See figure 10. It was further fine tuned

when similar day data of several weeks was taken,

averaged them and then tuned up the final weights. The

accuracy of a typical run was increased to almost 98%

when several weeks data along with temperature of that

day was taken into consideration. Most of the runs gave

accuracy between 97% and 98%.

OUTPUT OF THE PROGRAM

 Figure 10: output of the testing program

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 9

REFERENCES
[1] K. Y. Lee, Y. T. Cha, J. H. Park , “Short-Term

Load Forecasting Using An Artificial Neural

Network”, in transactions on power systems, vol. 7. No.

1, February 1992.

[2] Amera Ismail Melhum, Lamya Abd Allateefa Omar,

Sozan Abdulla Mahmood, “Short Term Load

Forecasting Using Artificial Neural Network”, in

international journal of soft computing and engineering

(ijsce) issn: 2231-2307, volume-3, issue-1, march 2013

[3] Mr. Rajesh Deshmukh , Dr. Amita Mahor, “

Artificial Neural Network Based Approach for short

load forecasting”, in International Journal of Advanced

Computer Research (ISSN (print): 2249-7277 ISSN

(online): 2277-7970) Volume 1 Number 2 December

2011

[4] Tomonobu Senjyu, Hitoshi Takara, Katsumi Uezato,

And Toshihisa Funabashi,“One-Hour-Ahead Load

Forecasting Using Neural Network”, in IEEE

transactions on power systems, vol. 17, no. 1, February

2002

[5] Mehmet Kurban And Ummuhan Basaran Filik, “Next

Day Load Forecasting Using Artificial Neural

Network Models With Autoregression And Weighted

Frequency Bin Blocks”, in international journal of

innovative computing, information and control volume 5,

number 4, April 2009

[6] Muhammad Buhari, Member, Iaenga And Sanusi Sani

Adamu,“Short-Term Load Forecasting Using Artificial

Neural Network”, in IMECS 2012 , March 14-16 2012,

Hong Kong.

[7]http://www.mathworks.com/matlabcentral/fileexchange

/28684-electricity-load-and-price-forecasting-webinar-

casestudy/content/Electricity%20Load%20 &%20 Price

%20Forecasting/Load/html/LoadScriptNN. html

[8] http://www.posoco.in

THE AUTHOR

AMIT SHRIVASTAVA has obtained BE (1999), M.E

(2006) in Computer Science from DAVV University,

Indore India. His interests are in Computer Applications

in Power Generation and Transmission Industry. Presently

he is submitting thesis for his PhD at Bhagwant

University, Ajmer Rajasthan India. He has published two

research papers on the topics of SCADA Automation in

Power-Industry, mail id - amitshrivastavaphd at the rate

gmail dot com.

DR ANAND KHARE has obtained MSc from Wales and

PhD from London. Presently he is a Research Director at

MRPC Company, Hyderabad. Formerly Faculty IISc

Bangalore and Hest Ham College London. Mail id –

ak_mrpc at the rate hotmail dot com

http://www.mathworks.com/matlabcentral/fileexchange/%2028684-electricity-load-and-price-forecasting-webinar-casestudy/content/Electricity%20Load%20&%20Price%20Forecasting/Load%20/html/%20LoadScriptNN.html
http://www.posoco.in/

