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ABSTRACT 
Neural Network technique works on the working of 

Human Brain which contains billions of neurons in 

several layers. Each neuron is connected with all the 

neurons of previous layer neurons and also with all the 

neurons of output layer neurons i.e. it is a complete 

bipartite interconnection. Similar is the case with every 

neuron. All the input which a neuron receives is summed 

and if it reaches certain threshold value then neuron gives 

output which is called the activation of that neuron. In 

this paper we have used 3-layer neural network for load 

forecasting. Also the results as obtained are also shown.  

The data used here for training and testing purpose is the 

actual Evening Hours Peak Load in “Mega Watt” taken  

from Madhya Pradesh Power Transmission Company 

Ltd. – State Load Despatch Centre , Jabalpur from 

Monthly System Performance Report – September 2012. 
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INTRODUCTION 
The proposed model is using the logic like this- It has 7 

neurons acting as input which will be holding the peak 

loads of mon - sun of 1st week of sep-2012, next 7 

neurons are there in hidden layers, after this 7 neurons are 

there in output layer which will be giving the predicted 

loads of next week mon to Sunday. At output layer the 

comparisons is done with the actual peak loads of next 

week (i.e. 2nd week of Sep 2012) and adjust the weights 

accordingly to minimize the error. Once the difference of 

predicted and actual loads become less then 0.00 the 

weights are fixed. This completes the training. Then it is 

given the 2nd week peak loads as input and prediction is 

done for the 3rd week. Results were compared and % 

accuracy was calculated. The contemporary work done in 

this field is illustrated below.   

[1] K. Y. Lee et.al. Has proposed Artificial Neural 

Network (ANN) non linear model based on two distinct 

load patterns namely weekday and weekend day load 

patterns. Past Loads are given as input and current day 

load is forecasted using 2 and 3 hidden layer network 

 

Model. Results are shown and % error was less then 3 %. 

[2] Amera Ismail et.al. Had done the short term load 

forecasting of the next day based on the two years actual 

load data obtained from Duhok ELc. Control in Iraq. 

Error was less then 3.7 %.  

[3] Mr. Rajesh Deshmukh et.al had used the 3 layer 

neural network model for 24 hour advanced load 

forecasting. They have used historical load data and real 

time load data of May 2011 from state load dispatch 

centre Jabalpur. Maximum % error was 9%. 

[4] Author has discussed one hour ahead short load 

forecasting for reducing the complexity of neural 

network. In the proposed prediction method, the 

forecasted load power is obtained by adding a correction 

to the selected similar day data. Results show that the 

forecasted errors have gone to maximum of 14% and 

1.63% on average. 

[5] In this paper Author has proposed two different hybrid 

approaches based on Artificial Neural Network (ANN) 

models with Autoregressive (AR) method and Weighted 

Frequency Bin Blocks (WFBB) for doing next day load 

forecasting. He has used ANN structure having two layers 

composed of 49 and 24 neurons for input and output 

layers, respectively. The forecasting results were obtained 

from AR, ANN and the two hybrid models which are 

compared to each other in the sense of root mean square 

error (RMSE). It is observed that the RMSE values for 

the hybrid approaches are smaller than the conventional 

models. 

[6] Author has used the levenberg-marquardt 

optimization technique which has one of the best learning 

rates as a back propagation algorithm for the multilayer 

feed forward ANN model using Matlab r2008b ANN 

toolbox. The forecasted next day 24 hourly peak loads are 

obtained based on the stationary output of the ANN with 

a performance mean squared error (MSE) of 5.84 e
-6  

and 

compares favorably with the actual power utility data. 

The results have shown that the proposed technique is 

robust in forecasting future load demands for the daily 

operational planning of power system distribution sub-

stations in Nigeria. 
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[7] In this website a complete MATLAB program is given 

 for load forecasting on the basis of past loads, 
 Temperature of the day and holiday knowledge. 

[8] This website was used for reference purpose. 

 
THE COMPLETE THEORY OF NEURAL 

NETWORK  

 

 
Figure 1- Relationship between I and J neuron.  

 

Weight adjustment rule for 2 layers Neural Network is: - 

Wji = Wji + α * Ij * Err (shown only for one weight. It 

had to be repeated for all the weights.). See Fig. 1   

Where α – is the fraction or learning rate. So effectively 

we are adding the fraction of the total error to the weight 

to adjust it. 

Wji  weight of the link between j
th

 neuron and i
th

 neuron 

Ij  Input to ith neuron = input * Wji = activation of jth 

neuron * Wji 

 Err T – O = correct output – predicted output 

 2 layer Neural network is good in learning 

Linearly separable function 

E.g. 1     We want to learn AND function 

Truth table of “AND” Function 

Table 1 

I1 I2 Output 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

 
           Figure 2  - AND Gate and its output 

In figure 2 it can be seen that “yes” and “no” output’s of 

AND Gate can be separated by a single Hyper plane. 

Such functions are known as “Linearly Separable 

Functions”. Similarly OR Gate also comes into the 

category of Linearly Separable Functions. These kinds of 

functions can be easily learnt by 2-layer Neural Network. 

E.g. 2 -  We want to learn Ex-OR Function 

Truth Table of “Ex-OR” Function 

Table 2 

I1 I2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

 
Figure 3 – EX-OR Gate and its Output 

As can be seen in Figure 3 no single Hyper plane is 

possible which can separate out “yes” cases with “No” 

cases. This comes under the category of Non-Linear 

Function. These functions can be learnt effectively by 3 

 Layer neural network.  

 

 
 

     Figure 4 – Sigmoid and Threshold Functions  

 

In Sigmoid function Input changes gradually and so is the 

activation level. In most of the cases Sigmoid functions 

are used for 3 layer neural network. However in certain 

cases Threshold functions are also required where output 

remains Zero up to a certain threshold value and then it 

switches to 1 after input gains certain threshold value. In 

threshold case g’ (in) (derivative of g) is dropped down as 

design choice. See figure 4.  
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Sigmoid function = 
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           where W, X are vectors i.e.  

W.X = ∑     
 
     

Basic Reason for going to 3 layer Network is shown in 

Figure 5. 

 

 
Figure 5 – Interdependency among Output Layer 

Neurons  

If we tune up Wk then we can tune up all output neurons. 

See figure 6. 

 

 
Figure 6 – Tuning up the output layer Neurons 

 
PROPOSED MODEL FOR LOAD 

FORECASTING 
In this technique we have used 7 neurons for the input, 7 

in the hidden layer and 7 in the output layer. The input 

layer gets the input of peak loads of Monday to Sunday of 

the current week. Then the weights are assigned to the 

links randomly in such a manner that summation of 

weights of all the links which are falling on the hidden 

layer and which are falling in the output layer 

is equal to 1. Then activation is calculated for all hidden 

layer neurons and based on this, further we calculate the 

activations of output layer neurons.  

In output layer also we have used 7 neurons which will 

predict peak load for the next week.  First neuron pre-

dicted load will be treated as predicted peak load for 

Monday of next week, second for Tuesday and so on. 

Next we compare the predicted load with the true output 

and do the weight adjustments until we get the predicted 

value close to true output. 

We can use these predicted values for taking the decision 

that if any one load increases then one of the load that is 

connected out of many is disconnected. 

       The sample software is developed which tries to 

estimate the peak load of the future on the basis of 

previously stored peak loads.  Neural Network self 

learning technique is used for Load forecasting. 

The two layered feed-forward artificial neural network 

which has the feature of memory and learning is 

constructed and Back Propagation learning algorithm is 

used to obtain load forecasting value. The load parameter 

setting is chosen to set load forecasting error limit and the 

like. 

Back propagation is a systematic method for training 

multi layer artificial neural network. It has a strong 

mathematical foundation. It is a multi layer forward 

network using extend gradient based delta learning rule, 

commonly known as back propagation rule. See Fig 7. 

The Neural network model for load forecasting is 

developed in C++ language and HMI (Human Machine 

Interface) for controlling the instrument is developed in 

LabView.  It’s a completely connected bipartite graph. It 

is first trained and then tested for predicting peak loads. 

For this we need to have actual peak loads of each day for 

at least 3 weeks. Following steps are followed for training 

and testing the network:- 
1. First part consists of training the neural network and 

in second part we do the testing of our neural network.  

2. We train the neural network with first week data as 

true input and second week data as true  

output.  

3. The output given by output layer neurons is compared 

with true output and does the weight adjustment until 

the predicted value become close enough to the true 

output.  

4. We fix the weights and then give second week true 

peak loads as input and predict the third week load.     

5. The predicted loads given by trained neural network 

are compared with the actual third week peak loads. 

6. We calculate the efficiency/effectiveness of our 

trained network by comparing the output of the 
neurons with actual peak loads of 3rd week. 

7. Above steps can be repeated for further weeks.  
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8. As we adjust the weights with more and more 

weeks i.e. as we train our neural network with 

more and more of data the weights begin to fine 

tune more and more resulting into greater 

accuracy. 

9. Also we can consider temperature data of that 

particular day for further increasing our 

accuracy.  

ai = g(∑               aj = g(∑              

Activation function can be sigmoid or simple linear 

function.  

Weights are adjusted as per following formula for linear 

function activation (i.e. without using sigmoid or any 

other activation function):- 

Wji = Wji + α * aj * Erri [These weight adjustments have to 

be done with every Wji connected with j
th

 neuron] 

Wkj = Wkj + α * ∑ [(yi-ai)*Wji] * xk [This had to be 

repeated with all inputs feeding into j
th

 neuron.] 

See fig 8. Above weights adjustments were found out by  

Partial derivation of error difference w.r.t. weight. It will 

be different for sigmoid function. 

α   Learning Rate 

Wji   weight between hidden layer jth neuron and output 

neuron i.   

WkjIt is Weight between input neuron k and hidden 

layer neuron j. 
ai It is activation for output neuron i. 

aj  It is activation for hidden layer neuron j. 

Erri   True output – Output generated by the output 

layer neuron 

Yi   True output 

xk   input value for the input layer neuron k. 

Where ∑ [(yi-ai)*Wji] is error summation over all i 

(output neurons) for error generated due to j
th

 neuron. 

All Wkj are to be adjusted which are feeding into j. 

 

          
                

                                                Figure 7: Neural Network model for Load forecasting  
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    Figure 8:- Weight adjustment of a single path 

 
DERIVATION- 
Root Mean Square error is the most common error which 

is used. 

RMS = 
 

 
 Err

2 
 = 

 

 
 (Y - ai)

2 

Where Y- is the true output,  ai – activation of i
th

 neuron 

Now for wt adjustment for Wj i.e. wts between hidden 

layer and output layer, we see the change in error with 

respect to change in wt i.e. Output error is partially 

derivates w.r.t wt Wj. Then fraction of that term is 

added to the weight Wj to reduce the error. 
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   = E  *  

        

   
   =  E  *  
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Since Y is a constant so when derivates, it gets 

eliminated. 

= E * ( 
     ∑        

   
 )  =  - E * g’(in) * Xj 

Here, E = Y - ai , i.e. true output – predicted 

output(activation of output neuron) 
Xj – is Input if it is 1

st
 layer ie Input layer neuron and it is 

aj  i.e. activation of jth neuron if this neuron belongs to 

higher layer neuron 

So, wt updating rule Wji now becomes  

Wji   Wji  - α *   ( -  E * g’(in) * Xj ) 

Wji   Wji  + α *   ( E * g’(in) * Xj ) 

Wji   Wji  + α *   (Yi - ai ) * Xj * g’(in)  

If we are not using any function and simply relying on wt 

adjustment for getting the correct output then as a design 

choice we can safely drop derivative of g i.e. g’(in) 

So, final Wt adjustment rule for Wji  i.e. wt between 

hidden layer and output layer becomes 

Wji   Wji  + α *   (Yi - ai ) * Xj   

 Wji   Wji  + α *   (Yi - ai ) * aj                   -- Eqn 1 

This wt adjustment is only for one link wt i.e. between jth 

neuron and ith neuron. In a similar fashion all the wts 

between hidden layer and output layer are to be adjusted.  

Now wt adjustment for Wkj i.e. link wt between hidden 

layer and input layer.  

 This Wkj is not only affecting aj (activation of jth neuron 

of hidden layer) but all activations of output layer also.   

Here also for wt adjustment for Wk,j  i.e. wts between 

hidden layer and Input layer, we see the change in error 

with respect to change in wt i.e. Output error is partially 

derivates w.r.t wt Wk,j. Then fraction of that term is 

added to the weight Wk,j to reduce the error. 
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Here   
     

     
  gets eliminated as Yi  is constant w.r.t  Wk,j. 

= - ∑           * 
   

     
    = - ∑           * 

       

     
    =    

-∑           g’(inj) 
      

     
       

= -∑           g’ (inj) 
    ∑            

     
          

Now Wj,i  is constant or not dependent on Wk,j as these 

two wts are independent from each other. So, Wj,i  comes 

out of derivation as a constant. However aj (activation of 

j
th

 neuron) is dependent on Wk,j . 

So, => - ∑           Wj, i) * g’ (inj) *   
      

     
    =  

    - ∑           Wj, i) g’ (inj) 
  ∑       

     
 

=   - ∑           Wj, i) g’ (inj) ak 

Again as a design choice “g’ (inj)” can be dropped. ak for 

input layer is Xk i.e.  the input feeding into input layer. 
=   - ∑            * Wj, i] * xk 

So, Weight updating rule for Wk,j =  Wk,j  -  α * (- 
∑            * Wj, i] * xk ) 

 Wk,j=Wk,j+α*∑           *Wj,i]*xk            -- Eqn 2 

∑            * Wj, i]  summation had to be applied 

to all i ( output neurons) 

This wt updating rule had to be repeated with all 

inputs feeding into j
th

 neuron i.e. all Wk,j are to be 

adjusted which are feeding into j. 

 WjiWji+α* (Yi - ai ) * aj                           -- Eqn 1 

 Wk,j=Wk,j+α*∑            * Wj, i] * xk        -- Eqn 2 

Procedure will be as follows:-  
1. Apply Eqn-1 to adjust all output wts of 1

st
 hidden layer neuron. 

2. Apply Eqn-2 to adjust all input wts of 1
st
 hidden layer neuron. 

3. Repeat step 1 and 2 to adjust all input and output wts of all 7 

neurons of hidden layer. 
4. Assign all output wts of hidden layer to corresponding input wts 

of output layer. 

5. Assign all input wts of hidden layer to corresponding output wts 
of input layer. 
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6. Calculate activations of all neurons of all layers. 

7. Activation value of output layer neuron is our 

predicted value. Compare the predicted value/Load 

with actual Load. Store the differences.  

8. Check the summation of all 7 differences (from 7 

output layer neurons). Repeat the above procedure 

until the summation of differences becomes 0.00. 

     The value of Learning rate α is very important so as to 

achieve the summation of differences = 0.00.  We 

have used learning rate α= 0.00000001 for Eqn-1 & α 

= 0.000000001 for Eqn-2. This has been obtained by 

hit & trial method.  

     No of passes required to reach the goal varies from 15 

to 32 which is near the optimum no of passes for this 

particular scenario. See Figure 9. 

 

PSEUDO CODE FOR NEURAL NETWORK 

MODEL FOR TRAINING(WHICH WAS 

ACTUALLY DEVELOPED IN C++) 

 
1. Define array of structures for input layer, hidden layer 

and output layer  

2. The input layer neuron structure will contain 2 fields 

namely (1) input load (2) array of 7 output weights 

3. The hidden layer neuron structure will contain 3 fields 

(1) array of 7 output weights (2) array of 7 input 

weights     (3) activation of a neuron 

4. The output layer neuron structure will contain 2 fields 

(1) activation (2) array of 7 input weights 

5. Assign 7 random inputs weights to hidden layer 

neuron and total weights coming to one hidden  

     layer neuron should be 1. Total 49 input weights will 

be assigned for 7 neurons of hidden layer. 

6. Assign 7 random inputs weights to output layer 

neuron and total weights coming to one output layer 

neuron should be 1. Total 49 input weights will be 

assigned for 7 neurons of output layer. 

7. Assign hidden layer input wts to output weights of 

input layer. 

8. Assign output layer input neuron wts to hidden layer 

output wts. 

9. calculate activations of hidden and output layer 

neurons 

10. Calculate the diff between true output and predicted 

value. 

11. Calculate the error to be back propagated to hidden 

layer. 

12. As per the error readjust the weights. 

13. Calculate the updated activations. 

14. Repeat steps 7 through 13 until the difference of the 

predicted load and actual load becomes less then 0.00. 

 

6 Text Files are generated from this program. 

1. Diff1.txt – containing difference of the True output 

and Predicted Output for all passes.  

2. Acti.txt – Containing the activation values of 7 output 

layer neurons for all passes.  

3. Iwts.txt – Containing 49 output weights of 7 neurons    

    of Input layer for all passes. 

4. Hwts.txt – Containing 49 input and 49 output weights  

    of 7 Hidden layer neurons for all passes. 

 

     

    

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

                 

 

                                     Figure 9 – Working of the Weight updating rule algorithm 
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5. Owts.txt – Containing 49 input weights of 7 output  

    Layer neurons for all passes. 

6. Fwts.txt – containing the final trained weights of Input,  

    Hidden and Output layer neurons. 

 

DIFF1.TXT 
Below data was generated in one typical run. We can 

see that the “sum of difference” is behaving as shown 

in Figure 9 until it reaches 0.005175. 

difference 

981.311573 ,549.520073 ,1388.227402 ,1668.05084 

,1146.024601 ,1382.751927 ,1590.259518 , 

sum of difference = 8706.145935 

 

 Individual difference 1 between true and predicted value 

-2084.053529 ,-1767.631439 ,-2260.168215 ,-

2405.55368 ,-2029.449868 ,-2147.376608 ,-2231.996729  

 sum of difference 1 = -14926.230067 

 

 Individual difference 2 between true and predicted value 

3923.541324 ,3614.507113 ,3930.282111 ,3989.143243 

,3630.133174 ,3668.477084 ,3660.478437 , 

 sum of difference 2 = 26416.562486 

 

Individual difference 3 between true and predicted value 

-5639.05569 ,-5391.029158 ,-5415.864814 ,-

5355.140693 ,-5079.857214 ,-5009.29444 ,-4875.428431  

 sum of difference 3 = -36765.67044 

……………… 

………………. 

 Individual difference 12 between true and predicted 

value 

0.068962 ,0.028012 ,0.119648 ,0.145648 ,0.094342 

,0.117803 ,0.146 , 

 sum of difference 12 = 0.720415 

 

 Individual difference 13 between true and predicted 

value 

-0.042856 ,-0.050623 ,-0.027894 ,-0.020576 ,-0.030623 

,-0.023893 ,-0.015532 , 

 sum of difference 13 = -0.211999 

 

Individual difference 14 between true and predicted value 

0.005376 ,0.001491 ,0.010293 ,0.012809 ,0.007937 

,0.010211 ,0.012945 , 

 sum of difference 14 = 0.061062 

 

Individual difference 15 between true and predicted value 

-0.003783 ,-0.00457 ,-0.002321 ,-0.001604 ,-0.002618 ,-

0.001959 ,-0.001143 , 

 sum of difference 15 = -0.017997 

 

Individual difference 16 between true and predicted value 

0.00041 ,0.00004038 ,0.000887 ,0.001131 ,0.000667 

,0.000887 ,0.001153  

sum of difference 16 = 0.005175 

 

ACTI.TXT 
It can be seen that after 16

th
 pass the Activation 

(Predicted Output) has become almost same as true 

output.  

0 TIME--ACTIVATIONS OF OUTPUT LAYER 

1-4361.688427 , 2-4276.479927 , 3-4169.772598 , 4-

4026.94916 , 5-3925.975399 , 6-3803.248073 , 7-

3712.740482 ,  

1 TIME--ACTIVATIONS OF OUTPUT LAYER 

1-7427.053529 , 2-6593.631439 , 3-7818.168215 , 4-

8100.55368 , 5-7101.449868 , 6-7333.376608 , 7-

7534.996729 ,  

………… 

…………. 

16 TIME--ACTIVATIONS OF OUTPUT LAYER 

1-5342.99959 , 2-4825.99996 , 3-5557.999113 , 4-

5694.998869 , 5-5071.999333 , 6-5185.999113 , 7-

5302.998847 ,  

true output 

5343 , 4826 , 5558 , 5695 , 5072 , 5186 , 5303 ,  

true input 

5236 , 5214 , 5060 , 5122 , 5266 , 5643 , 5064 , 

 

HWTS.TXT 
Each Neuron is associated with 7 weights. These are the 

finally trained weights which were used to predict 3
rd

 

week load when 2
nd

 week load is given as Input.  

  

SIXTEENTH  TIMEINPUT WTS OF HIDDEN 

LAYER/ OUTPUT WTS OF INPUT LAYER 

 neuron 1--> 

1  -0.06552 , 2-0.064374 , 3-0.062901 , 4-

0.063153 , 5-0.065965 , 6-0.069896 , 70.92586 ,  

 neuron 2--> 

1-0.063037 , 2-0.063613 , 3-0.058686 , 4-

0.062035 , 5-0.065151 , 6-0.069954 , 70.911899  

 neuron 3--> 

1-0.063747 , 2-0.056599 , 3-0.061731 , 4-

0.062069 , 5-0.057314 , 6-0.069124 , 70.890868  

neuron 4--> 

1-0.041113 , 2-0.061506 , 3-0.05441 , 4-

0.030233 , 5-0.059147 , 6-0.066051 , 70.826926 ,  

 neuron 5--> 

1-0.057111 , 2-0.054565 , 3-0.055689 , 4-

0.055707 , 5-0.057972 , 6-0.061813 , 70.819416  

neuron 6--> 

1-0.05735 , 2-0.056892 , 3-0.054407 , 4-

0.054357 , 5-0.050112 , 6-0.061812 , 70.802961   

neuron 7--> 

10.034536 , 20.034634 , 30.034231 , 40.039024 

, 50.034749 , 60.038036 , 70.877309 ,  
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SIXTEENTH  TIMEOUTPUT WTS OF HIDDEN 

LAYER/ INPUT WTS OF OUTPUT LAYER 

 neuron 1--> 

10.13025 , 20.105535 , 30.15081 , 40.164491 , 

50.132602 , 60.146357 , 70.160419 ,  

 neuron 2--> 

10.132035 , 20.103239 , 30.15442 , 40.162255 , 

50.136324 , 60.142161 , 70.152933 ,  

 neuron 3--> 

10.128125 , 20.101927 , 30.151184 , 40.159444 

, 50.129652 , 60.141457 , 70.15171 ,  

 neuron 4--> 

10.120545 , 20.102095 , 30.155515 , 40.168693 

, 50.128412 , 60.134267 , 70.163406 ,  

 neuron 5--> 

10.122176 , 20.092643 , 30.131908 , 40.144892 

, 50.125589 , 60.13902 , 70.136428 ,  

 neuron 6--> 

10.113881 , 20.100239 , 30.131792 , 40.14428 , 

50.11658 , 60.126662 , 70.136224 ,  

 neuron 7--> 

10.623256 , 20.594095 , 30.603684 , 40.597744 

, 50.564702 , 60.558044 , 70.546545. 

Another program is developed in C++ which read these 

finally trained weights from the file “fwts.txt”. The 2
nd

 

week load which was treated as true output for 1
st
 

program for training purpose was treated as true input 

for 2
nd

 program. Then the predicted load is found out with 

the help of these trained weights and true input of second 

  

 

Week. Finally predicted load is compared with true load 

of 3
rd

 week and % accuracy was calculated. 

 

Pseudo code for neural network model for 

testing(which was actually developed in C++) 

1. Adjust the weights of all neurons of all layers as 

per the finally trained weights. 

2. Give the 2nd week true peak loads as input and 

predict for 3rd week (by calculating the 

activations of output layer neurons). 

3. Find the accuracy of prediction. 

 

True data used in this program is as follows: 

1
st
 week - 5236 , 5214 , 5060 , 5122 , 5266 , 5643 , 5064 , 

2
nd

 week - 5343 , 4826 , 5558 , 5695 , 5072 , 5186 , 5303   

3
rd

 week – 5043, 5622, 5816, 5934, 5865, 6043, 6121, 

Above values are in MW. 

 

CONCLUSIONS 

 
It was concluded that Network model was able to predict 

the next week Load with 96.5% accuracy i.e. error was 

less then 3.5%. See figure 10. It was further fine tuned 

when similar day data of several weeks was taken, 

averaged them and then tuned up the final weights. The 

accuracy of a typical run was increased to almost 98% 

when several weeks data along with temperature of that 

day was taken into consideration. Most of the runs gave 

accuracy between 97% and 98%.  

OUTPUT OF THE PROGRAM 

                         

                                                                     Figure 10: output of the testing program 
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